Control Chart (Peta Kendali) adalah gambaran dari sebaran data (variasi) apakah masuk range spesifikasi atau tidak.
Ada 2 Control Chart yaitu :
1. Variable Control Chart ---> data kualitas diperoleh melalui pengukuran aktual, macam-macamnya adalah : Xbar - R; Xbar - s; I - MR
2. Attribute Control Chart ---> data kualitas diperoleh tidak dari pengukuran namun dari pemerikasaan sesuai/tidak sesuai, good/bad, macam-macamnya adalah : p - chart; np - chart; s - chart dan u - chart
Definisi menurut handbook Leland Blank (1980) sebagai berikut :
RANGKUMAN RUMUS
Berikut uraian dari macam-macam peta kendali tersebut :
- X bar dan R Control Chart
Adalah jenis peta kendali variabel yang banyak digunakan karena perhitungan yang sederhana dan mudah dikerjakan. Peta kendali ini menganalisa perubahan pada harga rata-rata atau keterpusatan data pada Xbar dan standar deviasi atau penyebaran data pada R. Terdapat 2 cara penyelesaian data yaitu menggunakan rumus dan software minitab
Contoh soal :
Terdapat pengambilan
acak sampling ketebalan dari produk baja yang diambil sebanyak 5 kali
dan masing - masing sebanyak 25 buah data. Gambarkan sebaran data
tersebut untuk UCL dan LCL dengan metode X bar dan R Control Chart.
Dijawab :
Jumlah group : 25 data
Jumlah subgroup : 5 (digunakan untuk membaca Tabel)
Menggunakan SOFTWARE MINITAB
- Memasukkan hasil pengetesan di excel
- Menghitung Mean (x bar) dan Rentang (R)
- Menghitung X double bar dan R bar
- Mengcopy kan data dari excel ke worksheet software minitab sesuai gambar dibawah ini :
- Klik "Stat - Control Chart - Variables Charts for Subgroups - Xbar-R"- Sesudah klik "Xbar-R" maka akan muncul dialog seperti dibawah ini
- Terdapat 2 menu yaitu All observations for a chart are in one column dan Observation for a subgroup are in one row of columns
- Pilihan "Observation for a subgroup are in one row of columns" digunakan untuk tampilan data secara keseluruhan
-
Klik kotak dibawahnya, baru kemudian di sisi kiri (C1,C2 dst) akan
muncul dan double klik variabel tsb sehinga masuk ke kotak sebelah
kanan, klik OK
- Dibawah ini adalah hasil data dari tampilan control chart berbasis X double bar dan R bar
- Pilihan lain yaitu : "All observations for a chart are in one column" digunakan untuk menampilkan data per sub group
Kesimpulan dari peta kendali Xbar-R untuk contoh diatas adalah data sudah terkendali karena dari grafik, kesemuanya masuk dalam range LCL & UCL.
Menggunakan RUMUS
Xdouble bar = 1.506
R bar = 0.325
Mean ---> nilai A2 didapatkan dari Tabel diatas
UCL = Xdouble bar + (A2 x Rbar) = 1.506 + (0.577 x 0.325) = 1.693
CL = Xdouble bar = 1.506
LCL =Xdouble bar - (A2 x Rbar) = 1.506 - (0.577 x 0.325) = 1.319
Range ---> nilai D3 dan D4 didapatkan dari Tabel diatas
UCL = Rbar x D4 = 0.325 x 2.282 = 0.742
CL = Rbar = 0.325
LCL = Rbar x D3 =0.325 x 0 = 0
Dengan software minitab dan perhitungan rumus didapatkan nilai yang sama
- p - chart
p - chart adalah kependekan dari proportion defective control chart, digunakan untuk mengukur cacat (defective) / jumlah produksi. Cacat ada 2 yaitu defective (cacat sebagai kata sifat) ---> kumpulan dari beberapa defect (cacat sebagai kata benda) sedangkan defects (cacat sebagai kata benda) ---> cacat yang spesifik seperti penyok, tidak rata, patah, baret dll. Untuk p-chart digunakan cacat (defective).
Contoh :
Terdapat data 20 observasi dan setiap sampel dicek sebanyak 100 kali. Jumlah cacat seperti ditunjukkan dibawah ini
Dijawab :
Tipe cacat = defective
Tipe cacat = defective
Jumlah cacat = 800 (DEFECTIVE)
Total observasi = 20 x 100 = 2000Jumlah data per observasi (n) = 100
Menggunakan perhitungan RUMUS
Nilai p bar = jumlah cacat/total observasi = 800 / 2000 = 0,4
UCL = pbar + [3 akar(((pbar x (1-pbar))/n)] = 0.4 + [3 akar(((0.4 x (1-0.4))/100)] = 0.547
CL = pbar = 0.4
LCL = pbar - [3 akar(((pbar x (1-pbar))/n)] = 0.4 - [3 akar(((0.4 x (1-0.4))/100)] = 0.253
Menggunakan SOFTWARE MINITAB
- Mengetikkan data di excel kemudian mengcopikan ke kolom software minitab
- Kemudian klik "Stat - Control Chart - Attributes Chart - P"
- Muncul kotak dialog seperti dibawah ini, isikan variable tempat kita menaruh data tadi yaitu C1, subgroup size adalah jumlah pengambilan yaitu 100 kali
- Klik "OK" maka akan muncul control chart seperti dibawah ini
Didapatkan hasil yang sama antara perhitungan RUMUS dengan SOFTWARE MINITAB dan data sudah terkendali terbukti dari grafik semua data masuk dalam range LCL dan UCL
- np - chart
np-chart adalah kependekan dari number proportion defective control chart, digunakan untuk mengukur jumlah cacat (defective) / total produksi. Cacat yang digunakan dalam np-chart sama dengan pada p-chart yaitu defective (cacat kata sifat).
Contoh Soal :
Suatu perusahaan permen ingin membuat peta pengendali untuk
periode mendatang dengan mengadakan inspeksi terhadap proses produksi bulan
ini. Perusahaan melakukan 35 observasi dengan mengambil sampel 100 buah untuk
setiap observasi.
Data hasil
pengambilan sampel dapat dilihat pada tabel berikut.
Cara Manual (RUMUS) :
Dijawab :
Jumlah cacat (defects bukan defective) : 245
Total observasi : 35 x 100 = 3500
Jumlah data per observasi (n) = 100
pbar = jumlah cacat (defective)/total observasi = 245/3500 = 0.07
Jumlah data per observasi (n) = 100
pbar = jumlah cacat (defective)/total observasi = 245/3500 = 0.07
maka, n x pbar = 100 x 0.07 = 7
UCL = (n x pbar) + [3 akar ((n x pbar) x (1-pbar))] = 7 + 3 akar (7 x (1 - 0,07)) = 14.65
CL = n x pbar = 7
CL = n x pbar = 7
LCL = (n x pbar) - [3 akar ((n x pbar) x (1-pbar))] = 7 - 3 akar (7 x (1 - 0,07)) = - 0,12 ~ 0
Dengan SOFTWARE MINITAB langkah - langkahnya sebagai berikut :
- Seperti langkah diatas, dengan mengisi subgroup size = 100
- Didapatkan hasil seperti dibawah ini, terdapat 3 data yang outlier (ditandai merah) sehingga data harus dibuang (sampel 6, 16 dan 29) kemudian di running lagi
- Membuang data outlier sehingga dihasilkan data baru yang berjumlah 32
- Didapatkan grafik baru yang sudah di dalam spesifikasi (control limit)
KESIMPULAN : Didapatkan hasil yang sama antara perhitungan RUMUS dengan SOFTWARE
MINITAB dan data sudah terkendali terbukti dari grafik semua data masuk
dalam range LCL dan UCL
- u - chart
u - chart adalah kependekan dari unit defect control chart, digunakan untuk mengukur jumlah cacat (defect) / total produksi. Cacat yang digunakan dalam u-chart adalah defects (cacat sebagai kata benda)
yaitu menghitung banyaknya cacat-cacat (defects) pada cacat (defective) di
produk. Defects berarti cacat spesifik seperti penyok, baret, patah,
berlubang dll.
Contoh Soal :
Terdapat data 20 observasi dan setiap sampel dicek sebanyak 100 kali. Jumlah cacat (defects) seperti ditunjukkan dibawah ini
Dijawab :
Menggunakan RUMUS
Jumlah cacat (defects) = 800
Total observasi = 20 x 100 = 2000
Jumlah data per observasi (n) = 100
Nilai u bar = jumlah cacat (defects)/total observasi = 800 / (2000) = 0,4UCL = ubar + 3 akar (ubar/n) = 0,4 + 3 akar (0,4/100) = 0,5897
LCL = ubar - 3 akar (ubar/n) = 0,4 - 3 akar (0,4/100) = 0,2103
Menggunakan SOFTWARE MINITAB
KESIMPULAN : data tidak ada yang outlier, sehingga data sudah terkendali
- c - chart
c - chart adalah kependekan dari count defect control chart, digunakan untuk mengukur jumlah cacat (defects) / total produksi. Cacat yang digunakan dalam c-chart adalah defects sama dengan u-chart
Contoh Soal :
Terdapat data 20 observasi dan setiap sampel dicek sebanyak 100 kali. Jumlah cacat (defects) seperti ditunjukkan dibawah ini
Dijawab :
Menggunakan RUMUS
Jumlah cacat (defects) = 800
Total observasi = 20 x 100 = 2000
Jumlah data per observasi (n) = 100 UCL = cbar + 3 akar(cbar) = 0.4 + 3 akar (0.4) = 2.297
CL = cbar = 0.4
LCL = cbar - 3 akar(cbar) = 0.4 - 3 akar (0.4) = -1.497 ~ 0
Kutip Artikel ini sebagai Referensi (Citation):
Feriyanto, Y.E. (2017). Macam-Macam Peta Kendali (Control Chart) dengan Software Minitab. www.caesarvery.com. Surabaya
Referensi:
[1] Montgomery, Douglass C. (2009). Introduction to Statistical Quality Control 6th
[2] Feriyanto, Y.E. (2017). Catatan Pribadi Kuliah di Magister Manajemen Teknik. Surabaya
[3] Blank, Leland. (2010). Statistical Procedures for Engineering, Management and Science
Previous
« Prev Post
« Prev Post
Next
Next Post »
Next Post »