Trending Topik

Macam-Macam Korosi Material

Korosi adalah kembalinya logam ke bentuk bijihnya (caesarvery, 2015). Material yang dipakai bisa dicegah proses korosi-nya dengan beberapa metode seperti yang tertulis di: Macam-Macam Cara Pencegahan Korosi. Berikut diulas detail tentang macam-macam korosi :
  • Stress Corrosion Cracking (SCC)
Korosi yang berada di area yang tertarik atau tertekan (stress) pada material logam. Pada area yang tertekan/tertarik tersebut umumnya terdapat retak rambut atau bintik-bintik lubang (pit) sehingga bisa menjadi tempat reaksi korosi antara fluida yang mengalir dengan material logam. Umumnya reaksi yang merugikan adalah oksidasi dan pengelupasan lapisan pasifasi permukaan logam yang menyebabkan sifat properties seperti strength dan hardness turun sehingga menyebabkan failure. Parrot et al (2011) melakukan percobaan pengaruh ion chloride (Cl) terhadap material austenitic dan penelitian oleh Jones et al (1992) didapatkan informasi bahwa hal-hal yang mempengaruhi SCC adalah :
  1. Temperature
  2. pH
  3. Oxygen level humidity
  4. Residual stress
  5. Alloying and impurities di material
  6. Tingkat sensitifitas material
  7. Cyclic condition
  8. Pressure
  9. Konsentrasi fluida
  10. Potensial elektrokimia
  11. Viskositas
  12. Mixing atau stirring
Berdasarkan Schweitzer (2010) berikut penyebab beberapa material mengalami SCC:
  • Galvanic Corrosion/Bimetalic Corrosion/Dissimilar Metal Corrosion
Korosi yang disebabkan karena perbedaan potesial elektrokimia antara 2 material yang berbeda yang disatukan. Korosi ini terjadi ketika material menyentuh lingkungan yang bisa menyebabkan korosi seperti kelembaban, larutan elektrolite dan ion fluida. Gejala awal korosi ini adalah salah satu metal mudah teroksidasi berdasarkan "DERET VOLTA" sehingga korosi diantara metal cepat terjadi.

Proses terjadinya sebagai berikut:
Misalnya besi (Fe) disambung dengan zinc (Zn) dimana Zn terletak disebelah kiri dari Fe berdasarkan deret volta dan Zn lebih mudah teroksidasi daripada Fe. Metal Fe akan selalu mencari kestabilan untuk kembali ke bentuk asal bijihnya (kodrat semua senyawa logam) sesuai reaksi : Fe2+ + 2e ---> Fe. Elektron akan mudah terikat oleh lingkungan yang banyak ion-nya seperti elektrolit dan akan terikat oleh ion positif. Namun karena didekat metal Fe terdapat Zn yang mudah sekali teroksidasi sesuai reaksi : Zn ---> Zn2+ + 2e dan mudah melepaskan elektron maka elektron Zn akan terus menggantikan elektron Fe yang hilang sehingga lama-kelamaan metal Zn terkikis habis. Proses korosi yang disebabkan karena perbedaan potensial kimia 2 metal inilah yang disebut galvanic corrosion.
  • Pitting Corrosion/Korosi Sumuran/Korosi Lokal/Korosi Lubang
Korosi yang paling berbahaya karena sulit dideteksi dan sistemnya yang menggerogoti dari material bagian dalam. Umumnya pitting akan menyebabkan material fracture secara total tanpa ada gejala terlebih dahulu.
Beberapa penyebab pitting corrosion adalah:
  1. Chemical terperangkap sampai jenuh dalam waktu yang lama di area terlokalisir terlebih ketika material sudah mengalami damage terlebih dahulu. Chemical paling bahaya adalah asam, kelebihan ion chloride dan minim dissolved oxygen (menyebabkan lapisan pasif material menjadi tidak stabil dan mudah terkelupas)
  2. Lapisan protektif coating yang kurang tepat
  3. Struktur penyusun material yang tidak uniform (masih belum homogen ketika proses casting)
Cara pencegahan pitting corrosion adalah:
  1. Memilih material yang tepat dengan menyesuaikan lingkungan tempat aplikasi
  2. Mengontrol pH, konsentrasi ion Cl dan temperatur
  3. Penerapan cathodic/anodic protection
  • Erosion Corrosion/Abrasion Corrosion/Flow-Accelerated Corrosion (FAC)
Korosi yang disebabkan oleh aliran fluida yang korosif atau material yang bergerak pada fluida korosif. Di kebanyakan literatur dan aplikasi di lapangan erosion corrosion hampir disamakan dengan flow-accelerated corrosion (FAC) dimana FAC menggerus lapisan pasifasi material yaitu magnetite (Fe3O4) sehingga material lebih mudah terserang korosi.
Cara pencegahan erosion corrosion adalah:
  1. Mengurangi belokan aliran fluida sehingga turbulensi bisa ditekan sekecil mungkin
  2. Mengontrol kecepatan fluida
  3. Menggunakan material yang lebih tahan erosi
  4. Menggunakan inhibitor untuk menghambat erosi seperti rubber, chemical, dan coating
  5. Menggunakan cathodic protection
  6. Mengontrol oksigen terlarut dan temperatur di fluida
  7. Memberi filter agar solid particle tidak terikut fluida
  • Fretting Corrosion/Korosi Gesekan
Korosi yang disebabkan karena 2 permukaan metal saling bersentuhan sehingga menimbulkan luka di kedua permukaan metal. Umumnya pengelupasan lapisan metal sangat kecil tidak terlihat karena skala mikron namun karena lingkungan yang korosif menyebabkan timbul korosi di permukaan yang luka tersebut.
Cara untuk mencegah freting corrosion adalah:
  1. Memberikan pelumas (oil, grease) untuk mengurangi gesekan yang terjadi
  2. Menambah hardness material kedua logam yang kontak
  3. Menggunakan seal untuk menyerap vibrasi yang terjadi dan juga bisa untuk mencegah kelembaban atau oksigen masuk diantara permukaan yang bergesekan
  • Fatigue Corrosion
Korosi yang disebabkan karena kerusakan logam akibat gerakan yang berulang (cyclic). Fatigue corrosion hampir mirip dengan SCC dimana SCC untuk material yang tidak berputar berulang atau non-statis misalnya dibengkokkan, ditekuk atau ditekan.
Cara pencegahan fatigue corrosion adalah:
  1. Mengurangi tensile strength material
  2. Memasang corrosion inhibitor
  3. Coating atau memberikan lapisan terhadap material
  • Crevice Corrosion/Korosi Celah
Korosi yang terjadi diantara celah-celah sambungan metal sehingga memberikan ruang/celah tempat berkumpulnya konsentrasi chemical. Chemical yang berkumpul dalam konsentrasi besar akan berekasi dengan logam sehingga menurunkan sifat properties dan menyebabkan failure.
Cara pencegahan crevice corrosion adalah:  (Schweitzer, 2010)
  1. Mendesain sambungan yang baik misalnya menutup rapat celah lasan dengan filler welding sesuai material yang dilas, menggunakan non-absorbent gasket pada flange joint
  2. Menjauhi penggunaan gasket yang berpori dan disarankan menggunakan gasket yang kedap air
  3. Menambah campuran unsur yang tahan korosi ketika proses casting material, misalnya SS tahan terhadap crevice dengan penambahan Cr, Ni, Mo dan N
  4. Mengendalikan operasi agar laju korosi material menurun dengan upaya menurunkan temperature, mengurangi Cl content dan mengurangi kontak asam
  5. Pada tepian/sambungan tangki sebaiknya ditambal menggunakan tar atau bitumen sehingga air hujan tidak terperangkap di celah-celah sambungan
  • Hydrogen Damage/Embrittlement
Korosi yang disebabkan oleh kehadiran H2 yang berasal dari H2S, NH3, H2O. Unsur ini menyebabkan metal menjadi kehilangan ketanggguhannya (toughness) dan menjadi rapuh sehingga mudah terserang korosi. Proses reaksinya adalah hydrogen bereaksi dengan carbon hasil disosiasi carbon steel membentuk metana yang bersifat brittle.
4 H2 + C + Fe3C ---> 2 CH4 + 3 Fe
Hydrogen attack terjadi pada carbon dan low alloy steel pada tekanan dan temperatur tinggi >200 oC dalam jangka panjang sehingga terjadi reaksi penyerapan hydrogen (H2) dan iron carbide (FeC) atau carbon (C) pada larutan hydrocarbon (CxHy). Berikut reaksinya:

2 H2 + Fe3C ---> CH4 + 3 Fe

CH4 yang merupakan hydrocarbon yang tidak larut di iron lattice mengalami proses decarburization (pelepasan unsur carbon) sehingga sifat strength menjadi menurun. Proses decarburization terjadi pada temperature >540 oC (pada surface metal) dan >200 oC (pada internal metal) (Schweitzer, 2010).

  • Uniform (General) Corrosion/Korosi Seragam/Korosi Merata
Salah satu bentuk korosi yang paling sederhana dan bisa dilihat secara visual karena merata pada permukaan terbuka. Penyebab umum uniform corrosion adalah chemical attack dan terlarut-nya senyawa metal ke bentuk ion-nya atau berikatan dengan oksigen membentuk iron oxide scale (kerak kemerah-merahan). Sebenarnya lapisan metal (iron) terbentuk lapisan film pasifasi berwarna kehitam-hitaman yaitu magnetite, namun karena sebab tertentu lapisan tersebut terlarut (Schweitzer, 2010).
  • Intergranular Corrosion
Salah satu tipe korosi yang diambil tempatnya pada grain boundaries sehingga hanya terbatas area korosinya bertindak seolah-olah anoda dan area disekitarnya yang lebih besar seolah-olah adalah katoda. Aliran energi/ion dari anoda ke katoda menyebabkan korosi yang menyebabkan kehilangan strength dan ductility. Contohnya pada austenitic stainless steel yang dipanaskan atau didinginkan pada temperatur 800-1650 oF atau 427-899 oC maka unsur chromium (Cr) cenderung berekasi dengan carbon membentuk chromium carbide yang dikenal dengan istilah "sensitization atau carbide precipitation" sehingga dengan adanya ini terlah terjadi korosi pada grain boundaries tersebut (Schweitzer, 2010).
  • Biological Corrosion/Microbiologically Influenced Corrosion (MIC)
Korosi ini disebabkan oleh aktifitas organisme/bakteri/biota laut seperti ekskresinya yang berbahaya karena mengandung sulfur atau dikenal juga dengan istilah sulphide attack. Berdasarkan Schweitzer (2010), ada 5 penyebab MIC yaitu: (i) sulphuric acid oleh genus Thiobacillus yang konsentrasinya bisa mencapai 10-12%; (ii) hydrogen sulphide oleh sulphate reducing bacteria; (iii) organic acid; (iv) nitric acid; dan (v) ammonia
  • Selective Leaching
Selective leaching adalah pengelupasan salah satu komponen alloy oleh korosi. Sebagai contoh dezincification (leaching zinc dari brass), graphitic corrosion (leaching iron dari gray cast iron), denickelification (leaching nickel dari copper nickel), decarburization (leaching carbon dari carbon steel). Berikut leaching pada beberapa material by Ahmad (2006):
  • Atmospheric Corrosion
Sebenarnya ini bukan salah satu jenis korosi, dimana kejadiannya mirip dengan proses elektrokimia yang berhubungan dengan atmosfer. Beberapa faktor yang mempengaruhi adalah relative humidity, temperatur udara, sulphur content, chlorine content, curah hujan, debu, lokasi geografis. Berikut reaksi terjadinya atmospheric corrosion:
Berdasarkan Revie & Uhlig (2008), atmospheric corrosion harus didukung adanya elektrolit seperti moisture content, particulate content, dan impurities gas. Sedangkan untuk es dan iklim dingin tidak mendukung korosi bahkan cenderung menghambat. Impurities gas yang dimaksud seperti H2S, SO2, NH3, HCl, NO2, O3, RCOOH (alkyl alkanoat).
Berikut reaksi ketika iron surface terkena acid rain (hujan asam) karena banyak impurities gas yang mengandung SO2


  • Exfoliation
  • Filiform Corrosion
Korosi yang terjadi  dibawah coating dalam bentuk distibusi random seperti benang/filamen

Kutip Artikel ini sebagai Referensi (Citation):
Feriyanto, Y.E. (2019). Macam-Macam Korosi Material, Best Practice Experience in Power Plant. www.caesarvery.com. Surabaya

Referensi:
[1] Feriyanto, Y.E. (2017). Analisa Kerak Tube Boiler & CondenserBest Practice Experience in Power Plant. Surabaya
[2] Parrot, R., dan Pitt, H. (2011). Chloride Stress Corrosion Cracking in Austenitic Stainless Steel. Health and Safety Laboratory. United-Kingdom
[3] Jones, R.H., dan Ricker, R.E. (1992). Mechanisms of Stress Corrosion Cracking. SCC Materials Performance and Evaluation. ASM International
[4] Corrosion Institute. (2000). Bimetallic Corrosion. Teedington
[5] https://www.nace.org/
[6] http://www.cdcorrosion.com/
[7] Schweitzer, P.A. (2010). Handbook of Fundamentals of Corrosion Mechanisms, Causes, and Preventative Methods. CRC Press. London & New York
[8] Revie, R.W., and Uhlig, H.H. (2008). Corrosion and Corrosion Control, An Introduction to Corrosion Science and Engineering. Fourth Edition. John Willey & Sons
[9] Ahmad, Z. (2006). Handbook Principles of Corrosion Engineering and Corrosion Control. Elsevier

Previous
« Prev Post